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Introduction

NORMAL mode analysis of a discrete system results in a se-

quence of frequencies and their corresponding mode shapes.
These frequencies and mode shapes are normally put in a numbered
order, sequentially increasing with increasing modal frequency. This
ad hoc modal numbering convention enables automated iterative
model-updating procedures to keep track of the modes. A more
precise way of modal identification would be to look at the graphic
display of each mode shape and give it a name according to its phys-
ical features. This approach has many advantages, but it requires a
highly experienced vibration engineer to do it right; and there is not
as yet an artificial intelligence which can do it.

A frequently encountered problem in any iterative optimization
procedure is how to keep track of correct modal identification when
design changes introduced after each iteration give rise to a new set
of natural frequencies and mode shapes in which two or more of
frequencies switch their positions in the ordered sequence. When
this occur unrecognized, the modal properties of the switched modes
appear to be discontinuous. Any further improvements on these
modes become meaningless, since they are now being targeted to
the wrong target modes. Such a problem is commonly known as the
mode crossing condition. There are, so far, very few works which
have addressed this problem.

A related mode tracking problem is the mode coupling condi-
tion which is caused by the rapidly changing behavior of crossing
modes during the crossing interval. A solution to this problem is
also discussed.

The present work! focuses on the development of a method which
solves the problem, in a practical manner, with a minimum increase
in computer resources. Furthermore, the method produces a modal
coordinate transformation matrix which is useful in transforming
any modal related matrices into a correct order.

Solution Techniques

To solve nonlinear problem, an iterative procedure, is assumed
which modifies design parameters based on system modal perfor-
mance requirements. Let the baseline eigenmodes be ordered based
on the solution of the initial modal analysis and assume they are
numbered from 1, for the lowest frequency mode, through s. If 7
is the set of ordered numbers i = 1,2, ..., s corresponding to the
baseline modal numbers, then J represents a subset of 7 which con-
tains ¢t modal numbers, j = ji, j2, ..., Ji, of the targeted baseline
eigenmodes.

Initial Iteration
The initial targeted modes are partitioned out of the extracted
eigenmodes by

[9°], = [®°LIP°T], ' 1)

where [®]; is the extracted modal matrix, [®]; the targeted modal
matrix, and [P],; the corresponding modal coordinate transforma-
tion matrix containing Os and 1s. The initial [P],,, i.e., [P°],,, is
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simply formed based on the set of modal numbers corresponding to
the baseline eigenmodes chosen by the user. This operation allows
for arranging the targeted modes in any order. For example, if the
baseline eigenmodes contain three modes, i.e., s = 3, and, among
them, only two modes are targeted modes, with the correspondence
order of j, = 3 and j, = 1, the corresponding partition operator is

o [0 01
[111—100

After the partition operation, [®]; is stored in a database which
allows the stored information to be passed on to the next iteration.

Subsequent Iterations

The same operation is carried out in all of the subsequent itera-
tions. For the kth iteration, where k = 1, 2, .. ., the following steps
are performed:

1) Fetch [$*']; from the database.

2) Determine the modal assurance coefficient (MAC) matrix, re-
lating the mode shapes of the two successive iterations.

acy, = [87])[#], @

where [<i>] represents the normalized [®] with each column being
unitary.

3) Determine the Boolean operator [ P*];;. First, the MAC matrix
is normalized to have the maximum value in each row be 1. The
normalized MAC matrix is then filtered by replacing terms smaller
thakn 1, with Os and the resulting matrix is the Boolean operator
(P 1.

4) Partition targeted modes. A new set of modal vectors can now
be partitioned and rearranged in the correct order with respect to the
baseline eigenmodes by

[®*1; = [®"[P41F, 3)
5) Store [®*]; into the database.

Dealing with Coupled Modes

The described approach usually can keep track of modes which
cross each other, as long as the iterations give eigenvalue solutions
which either precede or follow the crossing. For solutions which
land in the middle of a crossing, however, the fast-changing crossing
mode shapes often become temporarily unrecognizable. In a mode
crossing (of a fully coupled system) the two modes do not cross in
frequency but, instead, rapidly interchange mode shapes with each
other. The two modes are said to be coupled together during this
interval and can be extremely difficult, if not impossible, to track.
The MAC coefficients relating the sets of mode shapes, one or more
of which occur in this interval, often do not show a clear closeness
to either 1 or 0 for the coupled modes, even when the design variable
changes between successive iterations are small.

An analytical logic is developed to detect the occurrence of the
coupling condition and to identify the coupled modes. The pro-
gram then temporarily suspends dealing with the untrackable modes
until they are no longer detected as being coupled. To automate this
procedure, an automatic recognition of the coupled modes is es-
sential. The following presents a mathematical justification for the
suggested method.

At the iteration k, [®*]; is determined using Eq. (3), and the
following expression can be written:

(@1, = [®*]; +[A®"], @
and
[A®F], = [®"1,14%)], . )

When modes are all uncoupled, elements of [A*];; are small.
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Table 1 Black Hawk correlation results using original PAREDYM

Table 2 Black Hawk correlation results using modified PAREDYM

Mode
Iteration 1 2 3 4 5 6

Mode
Tteration 1 2 3 4 5 6

Frequencies f;, cps
0 5.336 6.361 9429 11.011 12.348 12.746
1 5.354 6.471 9.699 11.376  12.799 13.117
2 5.474 6.602 10.005 11.721  13.141 13.186
3 5.636 6.817 10.382 - 12200 13.636 13.878
4 5.581 6.817 10.559  12.449  13.465 13.788
Test 5.581 6.819 10.588  12.555 14.054  13.808

Frequency errors (A f;)

Frequencies f;, cps
5.336 6.361 9429  11.011 12348  12.746
5.354 6.471 9.699  11.376 12799  13.117
5.474 6.602 10.005  11.721 13.186  13.141
5.588 6.772 10337  12.181 13.662  13.676
5.598 6.828 10565 12.495 13971 '13.762
Test 5.581 6.819 10.588 12,555  14.054  13.808

Frequency errors (Af;)

AL =O

0 0.0438 0.0672 0.1095 0.1230 0.1214 0.0770 0 0.0438 0.0672 0.1095 0.1230 0.1214 0.0770
1 0.0405 0.0510 0.0840 0.0939 0.0892 0.0501 1 0.0405 0.0510 0.0840 0.0939 0.0892  0.0501
2 0.0191  0.0319 0.0551 0.0664  0.0650 0.0451 2 0.0191 0.0319 0.0551 0.0664 0.0617 0.0484
3 0.0100 0.0003 0.0194 0.0283 0.0297 0.0051 3 0.0013  0.0069 0.0237 0.0298 0.0268 0.0106
4 0.0015 0.0004 0.0027 0.0084 0.0419 0.0014 4 0.0031 0.0012  0.0022 0.0048  0.0059 0.0034
Mode shape errors (Ag¢;) Mode shape errors (A®;)
0 0.1442  0.0469 0.0368 0.3899  0.1435 0.1013 0 0.1442  0.0469  0.0368 0.3899  0.1435 0.1013
1 0.1430 0.0464 0.0350 0.2645 0.1436 0.1006 1 0.1430 0.0464 0.0350 0.2645 0.1436  0.1006
2 0.1413  0.0465 0.0322 0.2157 1.3037 0.8933 2 0.1413  0.0465 00322 0.2157 0.1558  0.1231
3 0.1414 0.0476 0.0312 0.2184 0.1561 0.1076 3 0.1406  0.0470 0.0306 0.2134 0.1655 0.1174
4 0.1399 0.0486 0.0296 0.1840 2.1478 57.820 4 0.1397  0.0482 0.0295 - 0.1885 0.1690  0.1340
Now, consider )
14. 1 T
[T MA@, = (R IM 1@ + [ARF 1T (MH 124, -
= [@])[MF[@, + [A] [T IMABY),
el
[29)
= [7*11 + (A" ® 2
0 e =
The matrix [J*];; contains 0 and 1. é 13.1 //” /
Now, let g -7 O MODE 5 (TARGET FREQUENCY)
[Hk]” — [@K—l]f[Mk][q)k]I %) O MODE 6 (TARGET FREQUENCY)
——— MODE 5 (ITERATION FREQUENCIES)
Then the inequality equation shown next should hold for all the —=— MODE 6 ITERATION FREQUENCIES)
corresponding elements of the matrices. ‘ E [
12, T T T~
UH 1 < U9510r + 1A (8 0 1 2 3 4
ITERATION

where [|e|] represents the matrix of the absolute values of its original
elements. Therefore, we have

[G¥1 = H* 151 — [17* 111 < UAM 2 ©

It is expected that the absolute values of all elements of [G*] are
relatively small for noncoupling cases. Any elements of [G*] having
relatively large absolute values are indications of possible coupled
modes.

A partitioning vector can be formed by scanning the zero and
nonzero elements of [G*]. This partitioning vector can be used to
partition out the untrackable modes from [©*];, the targeted modal
matrix. That is,

[®'], = [®f: ®}] (10)

where [<I>’5] and [@’l‘] are the untrackable modes and the active
modes, respectively, at the iteration k.

The idea is to temporarily leave out the untrackable modes [‘I>’5]
and to target the reduced set of modes [’I)’f], for the iteration k.
To resume tracking all of the targeted modes in the subsequent
iterations, we need to restore a complete set of interested modes
which are most updated and trackable. To do this we replace [<I>’5]
with its corresponding set from the previous iteration (assuming
those are trackable), i.e.,

(8], = [#5: #f] an

. =~k . .
Finally, we store [® ]; in place of [®*]; into the database and
resume the normal iteration process.

Fig. 1 Iteration history showing mode crossing phenomenon.

Demonstration Problem

This solution to the mode crossing problem has been implemented
into a system identification program PAREDYM? for correlating
MSC/NASTRAN modal analysis results with dynamic test results.’
A practical example involving a large finite element (FE) model and
real test results, is illustrated to demonstrate the effectiveness of the
method.

A full-scale Sikorsky Black Hawk helicopter was used as the test
structure for model correlation, and its actual natural frequencies
and mode shapes were obtained through dynamic shake testing. A
finite number of design variables, 33 in this case, were selected as
variable parameters for the adjustment of the FE model.*

For each mode i, a measure of the eigenvalue error is denoted as

ap =122 (12)
1
where f represents the test frequency for the ith mode and f is
the corresponding analysis value. The mode shape error for the ith
mode is defined analogously.

For comparison purposes, the Black Hawk problem was rerun
using both the original and the modified PAREDYM for four itera-
tions, and the results are presented in Tables 1 and 2, respectively. In
Table 1, it should be noted that the well-behaved steadily decreas-
ing frequency errors shown here originally misled investigators into
believing that these results were correct. The erratically deteriorat-
ing mode shape errors for modes 5 and 6, however, indicate that
something is wrong. The modified PAREDYM, on the other hand,
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is able to recognize that three crossings have occurred and is able to
correctly track the two modes through them (Fig. 1). Table 2 shows
the near-continuous mode shape errors which result when the cor-
rect tracking is followed. That these errors do not now decrease in
value, with successive iterations, is due to the fact that the mode
shapes themselves are not being targeted here.

Conclusions

A simple and practical method has been introduced to handle the
mode crossing condition, a common problem with iterative redesign
procedures to modify structural modal parameters. The method has
been applied successfully to modal correlation problems involving
large FE models and real test data.

Based on the results of this study, the mode crossing condition
can be detected using the modal assurance criterion, which com-
pares the mode shapes of two consecutive iterations, and this MAC
information can be used for a partition operation to correct the
modal orders. The simplicity of this method permits it to be used
in any iterative modal redesign procedure as a standard way of au-
tomatically preserving the correct modal orders with a minimum
effort.
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